Model-based Algorithm for Belief Revisions
between Normal Conjunctive Forms

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

Benemerita Universidad Autonoma de Puebla, Computer Sc. Dpt., Puebla, México
deliakzy@gmail.com, deita@cs.buap.mx, fzflores@yahoo.com.mx

Abstract. We consider a knowledge base (KB) K and a new informa-
tion ¢, both expressed in conjunctive form (CF), and present here, a
novel, deterministic and correct algorithm for belief revision of ¢ in K.
We denote our revision operator as: K’ = K o ¢. We introduce a novel
logical binary operator Ind between two conjunctive forms, such that
Ind(¢, K) generates also a conjunctive form. The operator Ind(¢, K)
works building independent clauses with the clauses of K, and whose
falsifying assignments of the resulting formula cover exactly the space
of assignments Fals(¢) — Fals(K), this is essential for performing the
process of belief revision K’ = K o ¢, and where K’ = &. Furthermore,
our proposal satisfies the KM postulates. We also present the correct-
ness proof of our belief revision method, and the analysis of its time
complexity.

Keywords: Propositional Inference, Belief Revision, Model Based In-
ference, Postulates KM.

1 Introduction

A widely accepted reference framework for reasoning in intelligent systems is
the systems approach based on knowledge bases. In this case, the sentences are
stored in a Knowledge Base (KB) provided with a reasoning mechanism [5]. A
fundamental challenge of these systems is the automation of deductive reason-
ing from the KB. Propositional deductive reasoning is generally summarized as
follows: given a KB K, which contains knowledge about a domain (”the world”),
and ¢ a statement representing the query that captures the current situation,
both expressed in propositional logic, the goal is to decide whether K implies ¢
(in symbols: K |= ¢), which is known as the problem of propositional entailment.

The propositional implication is an important task in problems such as es-
timating the degree of belief revision and updating of beliefs, working with ab-
ductive explanations, and many other procedures in applications of Artificial
Intelligence. For example, when working in planning, designing multi-agent sys-
tems, logical diagnosis, approximate reasoning, among other applications [4], [7].
In general, the problem of logical implication is a difficult challenge in the area of
automatic reasoning, and turns out to be a problem in the class Co-NP complete,
even in the propositional case [9].

pp. 29-39; rec. 2016-04-05; acc. 2016-05-25 29 Research in Computing Science 112 (2016)

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

Belief revision problem consists in incorporate new beliefs to a knowledge
base (KB) already established, changing as little as possible the original beliefs
and maintaining consistency of the KB. This article shows that the use of fal-
sifying patterns clauses help to determine whether an conjunctive form (CF) is
inferred from another CF, and therefore, it allows us to construct an algorithm
for belief revision between CF’s.

In short, the main contributions of our work are:

— We propose a method that works on the set of falsifying assignments of the
involved formulas, in order to review: K |= @.

— We introduce a logical operator between two terms, Ind(p;, C;), resulting in
a CF F's, such that Fals(F's) = Fals(p;) — Fals(Cj).

— We show that our proposal for the belief revision is correct, and holds the
Katsuno and Mendelzon postulates.

— Ind operator(y;, C;) was implemented to work in linear time on number of
variables involved, and it is the base of our procedure for belief revision.

— Although the operator Ind(y;, C;) performs efficiently, the number of clauses
in F's, that allows (K A F's) = ¢, can lead to an exponential growth (the
order 0(2("—”"1'”{|50¢|180i6¢})))_

1.1 State of the Art

The paradigm best known for belief revision is the AGM paradigm [1]. Sub-
sequently, Mendelzon and Katsuno [8] unified the different belief revision ap-
proaches to semantic, and reformulated the AGM postulates, which were called
now, KM postulates. Subsequently, Darwiche and Pearl [3] proposed the iter-
ated revision, where his proposal establishes a representation based on model
assumptions.

There are some proposals for belief revisions based on models, and they are
identified by the name of their authors; Dalal, Satoh, Winslett, Borguida and
Forbus [11]. Dalal [2] operator suggests to review, based on the minimum Ham-
ming distance between satisfied interpretations, and extend the distance between
interpretations and bases. In practice, this proposal involves the calculation of
the set of models, which is very expensive. One of the drawbacks of the approach
from Dalal is limited to the case of consistent knowledge bases. Therefore in [13]
is proposed a new method for computing Dalal’s revision that avoids the com-
putation of belief bases models, but it works only on disjunctive normal forms.

The Satoh’s proposal [14] is similar to Dalal, with the difference that the dis-
tance between two models is defined as the set of different literals between both
models. In the case of Winslett, the proposal is based on a comparison between
all possible consistent maximum systems. The Borguida and Forbus’ proposals
are similar of the Winslett, with the difference that Borguida considers incom-
patible models, and Forbus use the Hamming distance. More recently, the belief
revision has gained attention in the framework of symbolic logic, including Horn
fragments, and many operators for belief revision have been proposed according
to syntactic or semantic points of view [10,12,14].

Research in Computing Science 112 (2016) 30

Model-based Algorithm for Belief Revisions between Normal Conjunctive Forms
2 Preliminaries

Let X = {z1,...,2z,} be a set of n Boolean variables. A literal denoted as lit is,
a variable z; or a denied variable —x;. As usual, each z € X, 20 =~z y 2! = 2.
A clause is a disjunction of different literals. For k € N, a k-clauses is a clause
with exactly k literals, and (< k)-clause is a clause with at most k literals. A
phrase is a conjunction of literals. A k-phrase is a phrase with exactly k literals.
A variable x € X appears in a clause C' (or phrase) if or =z is an element of
C.

A congunctive normal form (CF) is a conjunction of clauses, and k-C'F is a
CF containing only k-clauses. A disjunctive normal form (DF) is a disjunction
of sentences, and k-DF is a DF containing only k-phrases. A CF F with n
variables is a n-ary Boolean function F:{0,1}" — {0, 1}. Rather, any Boolean
function F' has infinitely many equivalent representations, among these, some in
CF and DF.

We denote with Y any of the basic logic elements that we are using, such as
a literal, a clause, a phrase, a DF or a CF. v (Y) denotes the set of variables
involved in the object Y. For example, v(—-x; V z2) = {x1,22}. While [it(Y)
denotes the set of literals involved in object Y. For example, if X = v(Y) then
lit(Y) = X U-X = {z1,~21,...,%n, Zn}. We also use =Y as the negation
operator on the object Y. We denote to {1, 2, 3, ...,n} by [[1, n]], and the
cardinality of a set A by |A|.

An assignment s for a formula F' is a Boolean mapping s : v(F) — {1,0}.
An assignment s can also be considered as a non-complementary set of literals:
l € s if and only if s assigns true to [and —I false. s is a partial assignment
for the formula F' when s has determined a logical value only to variables of a
proper subset of F, namely s : Y — {1,0} and Y C v(F). A CF F is satisfied by
an assignment s if each clause F' is satisfied by s; A model of F' is an assignment
on v(F) satisfying F'.

A phrase f is satisfied by an assignment s, if f C s. Otherwise, s falsifies f.
A DF F is satisfied by s if a sentence in F' is satisfied by s. F' is contradicted
by s if all sentences in F are contradicted by s. Denote by SAT(F) to the set
of assignment in S(F) which they are models for F. Fals(F) denotes the set of
assignments in S(F) that falsifies F.

3 Inference Between Conjunctive Forms

In this section we analyze the computational complexity of the entail problem
between conjunctive forms: CF | CF. As K and ¢ are in CF, the falsifying
assignments Fals(K) y Fals(¢p) can be calculated efficiently [5]. Using falsifying
strings as the base for reviewing K |= ¢, that is equivalent to check whether
SAT(K) C SAT(¢), or that: Fals(¢) C Fals(K). The result of applying the
operator of belief revision between a KB K and the new evidence ¢ is denoted
as K' = K o ¢.

When K = ¢ then K/ = K o ¢ = K. If K [~ ¢ then Fals(¢) ¢ Fals(K),
which implies that there is a set of assignments S such that S C Fals(¢)y S &

31 Research in Computing Science 112 (2016)

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

Fals(K). If K £ ¢, then S = (Fals(¢) - Fals(K)) # (. In this case, our belief
revision method works building such set S, which allows to build a new CF F's,
such that S = Fals(Fs) and K’ = (K A Fs), and it holds K | ¢.

The proposed method obtains S = (Fals(¢) — Fals(K)) as a set of falsifying
strings, leading us to build a CF F's directly, where S = Fals(F's) and such that
K'= K A Fsis a new CF with less information than K (because K’ has more
clauses than K), in fact, it holds that if S # () then Fals(K) C Fals(K'), and
therefore, SAT(K') C SAT(K).

3.1 Construction of Independent Sets of Clauses

Let K be a CF, ie., K = /\7;1 C;, where each C;,7 = 1,...,m is a disjunction
of literals. The set of assignments forming Fals(C;) can be represented through
a string A; that consists of {0, 1, *}. If C; = {a;, V---V x;,} € K, then the
value; for each position from i; — th to ix_¢, of the string A;, has to falsify the
literals of C;. If w;; € C; then the i; — th element of A; is set to 0. If -z, € C;
then the ¢;_4, element of A; is set to 1. The variables in v(K) which do not
appear in C; are represented by the symbol * meaning that they could take any
logical value {0, 1} . In this way, the string A; of length n = |v(K)| represents
the set of assignments falsifying the clause C;. We will denote the formation of
the string representing Fals(C;) as A; = string(Fals(C;)). It is easy to build
Fals(K) since each clause C; determines a subset of falsifying assignments of
K. The following lemma expresses how to form the falsifying set of assignments
of a CF.

Lemma 1. Given a CF K = N\, C;, which holds Fals(K) =J;~,{0 € S(K) |
Fals(C;) C o}

Definition 1. [6] Given two C; and C; clauses, if they have at least one com-
plementary literal, will be called independent clauses. Otherwise, it is said that
both are dependent clauses.

Two independent clauses C; and C; have complementary pair of literals,
therefore their falsifying assignments also must have complementary literals,
that is, Fals(C;) N Fals(C;) = 0.

Definition 2. Let K = {C1,Ca,...,Cy} be a CF. K s called independent if
for any pair of clauses C;,Cj, € K, i # j, the property of independence is met.

Definition 3. Given two falsifying strings A and B each of length n, if there
is ani € {1,...,n} such that Ali] =z and B[i]| =1 —x, x € {0,1}, it is said
that they have the independence property. Otherwise, we say that both strings
are dependent.

Notice that falsifying strings for independent clauses have complementary
values (0 and 1) in at least one of their fixed values.

Let F = {C1,Ca, -+ ,Cp} be a CF, n = |v(F)|. Let C;,i € [[i..m]] be a
clause in F' and = € v(F) \ v(C;) be any variable, we have that

Research in Computing Science 112 (2016) 32

Model-based Algorithm for Belief Revisions between Normal Conjunctive Forms

Furthermore, this reduction preserves the number of falsifying assignments of
C; with respect to F, since #FAL(C;) = 27~ 1Cil = gn=(Cil+1) 4 on=(ICi+1) —
#FAL((C; VT) A (C; V x)), because (C; VT) and (C; V x) are two independent
clauses.

Definition 4. Given a pair of dependent clauses C1 and Ca, if lit(Cy) C lit(Cs)
we say that Co is subsumed by C1.

If Cy subsumes Cy then FAL(C3) € FAL(C1). On the other hand, if Cy
is not subsumed by C7 and they are dependents, there is a set of indices I =
{1,...,p} C {1,...,n} such that for each i € I,x; € Cy but x; ¢ C3. There
exists a reduction to transform Cs to be independent with C7, we call this
transformation as the independent reduction between two clauses that works as
follows: let C; and Co be two dependent clauses. Let {z1, 22, ..., z,} = Lit(Cy)\
Lit(Cs). By (1) we can write: C; A Co = Cy A (Cy V —z1) A (Coy V 1), Now Cy
and (Cy V —z1) are independent. Applying (1) to (Co V z1):

Cl/\CQECl/\(CQ\/_‘xl)/\(CQ\/xl\/_‘l'Q)/\(CQ\/l'l \/.%2)

The first three clauses are independent. Repeating the process of making the
last clause independent with the previous ones, until x,, is considered; we have
that Cq A Cy can be written as:

Cl/\(C2v_‘x1)/\(02\/x1\/_‘x2)/\. . ./\(C’Q\/xl\/xg\/...\/—mcp)/\(Cg\/:cl\/:cg\/...\/zp).

The last clause contains all literals of C1, so it is subsumed by C7, and then

Ci1NCy=Ci A (CoV—z)A(CaVarVoze) A A (CaVarVas V...V, (2)

We obtain on the right side of (2) an independent set of p + 1 clauses which
we denote as indep_reduction(C1, Cs).

We will use the independent reduction between two clauses Cy and ¢ (or
between their respective falsifying strings) to define:

%) If ¢ and C are independent
Ind(C,p) =< 0 If Lit(C) \ Lit(p) =0 (3)
indep_reduction(C, p) — C in other case

It is straightforward to redefine the operator Ind in terms of the falsifying
strings representing FAL(C) and F AL(p). The operation Ind(C, ¢) forms a con-
junction of clauses whose falsifying assignments are exactly FAL(p) — FAL(C).

Theorem 1. If ¢ and C are two clauses, then FAL(Ind(C,¢)) = FAL(p) —
FAL(C).

33 Research in Computing Science 112 (2016)

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

Proof. If Ind(C,¢) = 0 then FAL(p) C FAL(C), so FAL(p) \ FAL(C) =
(). Now, we assume that Ind(C,p) # 0. Let s be an assignment such that
s € FAL(Ind(C,p)). We will show that s € FAL(¢) and s ¢ FAL(C). If
s € FAL(Ind(C,)) then s falsifies ¢ because each clause in Ind(C,) has the
form (p V R), where R is a disjunctive set of literals (possibly R is empty). If s
falsifies (¢ V R) then s has to falsify ¢ and thus s € FAL(p). On the other hand,
each clause (¢V R) € Ind(C,) is independent to C' by construction of the oper-
ator Ind; therefore, FAL(C)NFAL(Ind(C,)) = 0. Furthermore, s ¢ FAL(C).

4 Belief Revision Between Conjunctive Forms

Our belief revision method is based on the following two properties:

1. If V s € Fals(¢) holds that s € Fals(K), then K = ¢.
2. If 3 s € Fals(¢), and s € Fals(K), then K [~ ¢.

The first case considers all assignments Fals(¢) are in the set Fals(K), which
show that K = ¢. And in this case K’ = K, since no need to change the KB
K. In the second case, the sets of assignments S such that Jp € ¢, S C Fals(p)
and S Z Fals(K) are detected.

Algorithm 1 Procedure Ind(y;, K)

Input: K: A KB, ¢;: Clause with new information
Push(p;, V); Fs = 0; {Output in F's a CF (Set of clauses)}
for all C; € K do
while (V # 0) do
¢ = Pop(V); {Try following clause}
Fs = Fs — ¢; {Remove the exit clause}
Nc¢ = Ind(¢,C;); {Form: NeACj = ¢ }
if (Nc # 0) then
Fs = FsU Ng¢; {Only if there are clauses to add}
end if
end while
V = F's; {Next iteration considers new clauses}
end for
Return(F's)

Example 1. Let K = (—=pVgVs)A(—gV-rVs)A(—gVrV-s)A(—-pV-gVr) and
¢ = (—pV-r)A(=gVr)A(pVqV—-rV-s)A(-t). To prove K |= ¢, it is equivalent
to check Fals(¢) = {1*¥1** *10**, 0011*, ****1} C Fals(K) = {10*0*, *110*,
101, 110**}. In each cell of column 2 of the table 1, it will show the result of
Ind(:, C).

For example, let C; = (2Vq), and C; = (—2Vq), then C;AC; = (¢). In terms of
the falsifying strings clauses, we denote such a reduction as Varcom(A;, A;). In

Research in Computing Science 112 (2016) 34

Model-based Algorithm for Belief Revisions between Normal Conjunctive Forms

Table 1. Building Ind(¢, K) operator

é K 10*0*|*110*|*101*|110**| S
1HI** 117%%|1111%{1111%|1111%|1111%
1011*{1011*|1011*|1011*|1011*
10% *10**[*10**|*100*|0100*|0100*
0011* 0011*|0011*{0011*{0011*|0011*
FRHH] 0% *1[00%*1|00%*1|00**1|00**1

010*1]01001/01001|01001
01111]01111|01111{01111
11**1[110%1[11001] O 0

11111(11111(11111{11111
10¥11|10%11[10%11|10¥11|10%11

the case of our example, we have: Varcom{1111*,1011*} = {1*11*}. It is relevant
to apply the reduction operation by complementary literals on the strings in S,
for minimizing the total number of clauses. Thus, Varcom and subsumed clauses
are applied in order to reduce the resulting CF, from the example 1, we have:

S = {1¥11*, 0100%, 0011*, 0***1, *1111, 10%11}. Writing S as CF, Fs =
(=pV-rV=s) A(pV—gVrVs)A(pVgV-rV-s)A(pV-t)A(—gV-rV-osV
—t) A (mpV qV sV t). So, the new KB K = K A F's holds K’ |= ¢.

5 Method Properties of Belief Revision

Theorem 2. Given two clauses @; and C;, it holds that (C;A Ind(p;, C;)) =p;.

Proof. If ¢; and C; are independent clauses, then ¢; = Ind(y;, C;) and therefore
(C5 AN Ind(p;,Cj)) = (C5 A pi). So (C; A ;) = @i, propositional property by:
((pAq) D g and the reflexivity of the logical inference: ¢; = ¢;i. If ¢; and C; are
not independent, but Ind(y;, C;) = 0, this implies that Fals(p;) C Fals(C;) and
such Cj ': (Yo As Cj = (C'J/\Ind(gaz, Cj)), then (C'J/\Ind(gaz, C])) ': ©i- When (Y2
and C; are not independent, and Ind(y;, C;) # 0, it holds that (C; AInd(y;, C;))
= (CjAy;) by (2), fulfilling that (C;Ay;) = @i, propositional property by: ((pAq)
D ¢, and reflexivity: ¢; | ¢;. Thus, for any of the three possible outcomes of
Ind(p;, Cy), it is true: (Cy A Ind(pi, Cy)) E ¢i.

Corollary 1. Fals(Ind(p;, K)) C Fals(y;).

Proof. Fals(Ind(y;,C;)) = Fals(p;) — Fals(C;), to iterate over each C; of K is
satisfied that Fals(Ind(y;, K)) = Fals(p;) — Fals(K). And properties between
sets, it holds that Fals(Ind(¢;, K)) C Fals(p;).

Example 2. Let K = (—=pVqVrVs) A (-pV—q) A (=pV-r)y ¢ = (-pV-sV-it)
A(@V-rV=asVvat) A(—pVgVrVasVit) A (—p), check if K = ¢. It is equiv-
alent to check whetherFals(¢) = {1**11, *0111, 10010, 1****} C Fals(K) =

35 Research in Computing Science 112 (2016)

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

Table 2. Application of Ind(¢, K) operator

é K 1000* [11**F*|1*1**| &
1%¥%11 1**11{10*11(10011|{10011
*0111 *0111{00111/00111|00111
10010 10010{10010{10010{10010
TR 11%%% () 0 0
101**[101%*| 0 0
1001*{1001*{1001*|1001*

{1000%*, 11*** 1*1**} In each cell of the table 2 is shown Ind(y;, C;). As shown
in Table 2, Ind(p, K) is applied to a greater number of strings to those shown
in Table 3, because in table 3, before to apply the independence operator, the
clauses C; € K are ordered according to the size |lit(C;) — lit(y;)|. Because the
number of literals C; different with wvarphi; determine the number of indepen-
dent clauses to be generated by Ind(®, K)

Table 3. Calculation Ind with the C; € K sorted

& K TFIFF11***11000%| S

1**11 1*011{10011{10011{10011
K 1000%|11*** | 1%1%*| §

©2

*0111 00111|00111{00111{00111
K 11%%*1%1**11000*| S

¥3

10010 10010{10010{10010{10010
K TRIF¥11***11000%| S

!

T 1*0**|100**|1001*| 1001 *

Therefore, before applying operator Ind(p;, K), it is appropriate to order
the clauses of K according to the literals of each ¢;, as shown in Table 3.
It gives us an strategy on the number of independent clauses to be generated.
Also, the number of clauses to be generated is reduced via reduce clauses with
complementary literals, it results in the case of example 2, S = {1001x,00111},
whose CF is F's = (-=pVqVrV-s) A (pVgqgV-rV-sV-t) Thus, K' =
KANFs=(pVgVvrVvs) A(pV-g) A(pV-r)A(—pVgVrV-as) A
(pVqV-rV-asV-t).

Research in Computing Science 112 (2016) 36

Model-based Algorithm for Belief Revisions between Normal Conjunctive Forms
6 The KM Postulates

We present here the analysis of the postulates on our proposed belief revision
operator K/ = K o® = K A Ind(®, K). Consider now the KM postulates.

- (R1) Ko¢ E ¢.

— (R2) If K A ¢ is satisfiable then K o ¢ = K A ¢.

— (R3) If ¢ is satisfiable, then so is K o ¢.

— (R4) If K1 = K2 and ¢1 = ¢2, then K10 ¢1 = K2 o ¢2.

— (R5) (Kog) Ay Ko(dA7).

— (R6) If (K o ¢) A~ is satisfiable then also K o (p A7) = (K o ¢) A~.

Theorem 2 shows that our belief revision operator meets the postulate R1.
If K A @ is satisfiable and K |= @, then each p; € @ is inferred from K and
therefore Ind(p;, K) = p;,i=1,...,k. As, Ko® = K ANInd(®,K) = K AN,
fulfilling the postulate R2. The R3 postulate is fulfilled if K o¢ is satisfiable (for
R2). But if Fals(K)UFals(Ind(¢, K) would cover the entire space assignments:
2™ then only in this case, K o ¢ is redefined. K o ¢ is redefined to hold R3. And
it is redefined K o ® = ((K AInd(¢, K)) — C;), selecting the clause C; € K with
the least information (note that |[SAT(C};)| is minimal on the cardinality of the
set of models if |C}| is maximum in K).

R4 and R5 postulates are satisfied because our review operator is closed
on conjunctive forms. On the other hand, Fals(K o (¢ Av)) = Fals(K AS A
Ind(v,K)) = Fals(KAS)UFals(Ind(v, K)) = Fals(Ko¢)UFals(Ind(, K)) C
Fals(K o¢)U Fals(7y), by Corollary 1. Thus, Fals(K o (¢Av)) C Fals(Ko¢)U
Fals(vy) = Fals((K o ¢) Ay) R5 fulfilled. If (K o ¢) A~ is satisfied, then K o (¢ A
¥) E (Kop)Ay. As Fals((Kop)Avy) = Fals(K AInd(¢, K) A7), but (y) would
equal Ind(vy, K) iff v is independent with each clause of K, and then only in that
case, we have that Fals (K A Ind(¢, K)Av) = Fals(K A Ind(¢, K) A Ind(vy, K))
= Fals(K o (¢ A~v) and then, the postulate R6 is held.

7 Time-Complexity Analysis

The time function for our belief operator K o ¢ will be denoted as Ty(|¢|, |K|),
and it depends mainly on the runtime operator of independence: Ind(¢, K).
Ind(¢, K)) is obtained from the iterative calculation of Ind(y;, K).

The time complexity of Ind(y;, K) process is of order O(|K|-n- f(|¢il, | K1),
where f(|g;],|K]|) is an entire function , that given a clause ¢; and a CF K,
determines the number of terms that will return the Ind(p;, K) process.Let us
now analyze the maximum possible number of clauses that can be generated
through the process Ind(p;, K). In some cases, Ind(yp;, K) can generate null
sets (when 3 C; € K, such that C; = ¢;)), but in the worst cases, the time
complexity of calculating Ind(y;, K) depends on the length of the sets: S;; =
{z1,22,...,xp} = lit(C}) - lit(p;), 5 =1,...,m.

As noted in Example 2, a fixed p; € ¢, it is appropriate to order the clauses
C; € K according to the cardinality of the S;;, 7 = 1,...,m from lowest to high-
est, and eliminating the clauses that are independent with ;. When there is no

37 Research in Computing Science 112 (2016)

Alma Delia Garcia, Guillermo De Ita, Fernando Zacarias

independent clauses with ¢;, neither S;; = @ for j = 1,...,m, the time complex-
ity for calculating Ind(y;, K)) is bounded by the number of resulting clauses. In
other words, it must |Ind(p;, K)| < [Si1] * |Sia| * ... * |Sim| * Poly(n). Where
Poly(n) summarizes a polynomial time on the number of variables generated
applying the operator Ind(y;,Cj). Then, we can infer that the time complexity
To(|¢|, | K|) for our belief revision operator, in the worst case, is upper bounded
by Max{|Si1| * |Si2| * ... * |[Sim| : YVeo; € ¢}, eliminating polynomial factors on
n (the number of variables) and the size of the KB K and the maximum value
for this upper bound is 2(*~mdleilwi€h) Thus Ty(|¢|, |K|) < Max{|Si| *
|SZQ| LI |Slm| Vo € ¢} S O(2(nfmin{|4pi|:<pi€¢})).

8 Conclusions

We present a new method for belief revision betweeen CF’s. As K and ¢ are
CF’s, the review process between K and ¢ is reduced to make the review be-
tween each ¢; € ¢ and each C; € K, simplifying the overall problem to do
| K| % |¢| subproblems of review between two clauses. A logical operator, called
Ind(p;, C;), was built. Ind(p;, C;) finds the clauses whose falsifying assignments
is Fals(¢) — Fals(K). The correctness of our proposal is proved, and we show
that it also holds the KM postulates. We also show the complexity-time of our
proposal.

References

1. Alchourron, C., Gardenfords, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510-530 (1985)

2. Dalal, M.: Investigations into theory of knowledge base revision. In: Proc. The
Seventh National Conference on Artificial Intelligence. pp. 475-479. AAAT (1988)

3. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence
89, 1-29 (1997)

4. Darwiche, A.: On tractable counting of theory models and its application to truth
maintenance and belief revision. Applied Non-Classical Logics 11, 11-34 (2001)

5. De Ita, G., Zacarias., F.: Supervised and unsupervised lexical knowledge methods
for word sense disambiguation. Computers and the Humanities 34, 103-108 (2000)

6. Doubois, O.: Counting the number of solutions for instances of satisfiability. The-
oretical Computer Science 81, 49-64 (1991)

7. Ellis, D.: Irredundant families of subcubes. Mathematical Proceedings of the Cam-
bridge Philosophical Society 150, 257-272 (2011)

8. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge
base and revising it. KR’91 Cambridge, MA, USA 1, 387-394 (1991)

9. Khardon, R., Roth, D.: Reasoning with models. Artificial Intelligence 87, 187-213
(1996)

10. Liberatore, P., Schaerf, M.: Belief revision and update: Complexity of model check-
ing. Journal of Computer and System Sciences 62, 43-72 (2001)

11. Liberatore, P., Schaerf, M.: The coplexity of model checking for belief revision and
update. Journal of Computer and Systems Sciences 62, 43—72 (2001)

Research in Computing Science 112 (2016) 38

12.

13.

14.

Model-based Algorithm for Belief Revisions between Normal Conjunctive Forms

Nebel, B.: How hard is it to revise a belief base? Handbook of Defeasible Reasoning
and Uncertainty Management Systems 3, 77-145 (1998)

Pilar Pozos Parra, W.L., Perrussel, L.: Dalal’s revision without hamming distance.
In: 12th Mexican International Conference on Artificial Intelligence. pp. 41-53
(2013)

Satoh, K.: Nonmonotonic reasoning by minimal belief revision. Institute for New
Generation Computer Technology 358, 157-170 (1988)

39 Research in Computing Science 112 (2016)

